ESTD. 2010

Crossian Resonance

A Multidisciplinary Research Journal

(A Refereed Biannual Published in June and December)

Vol. 9 No. 2 December 2018

Cross. Res.: Dec. 2018

P-Prime and Small P-Prime Ideals in Near-Rings

C. Jenila

Department of Mathematics, Holy Cross College (Autonomous), Nagercoil.

ABSTRACT

In this paper we introduce the notions of P-prime ideal and small P-prime ideal which is a generalization of prime ideal and obtain equivalent conditions for an ideal to be P-prime. Also we introduce the notions of P-m-system and small P-m-system in near-rings.

Key words: P-prime ideal, small P-prime ideal, P-m-system, small P-m-system.

2010 Mathematics Subject Classification: 16Y30, 16Y60.

1. Introduction

Anderson and Fuller [2] defined small right ideal in rings. Aldosary and Bashammakh [1] obtained results on small right ideal satisfying the chain conditions. For the basic terminology and notation we refer to [3].

Throughout this paper, N denotes a zero-symmetric near-ring and P denotes an ideal of N which is arbitrary but fixed. For any subset A of N, < A > denotes the ideal of N generated by A. For any $a \in N$, < a > stands for the ideal of N generated by a. An ideal A of N is said to be prime if BC \subseteq A implies B \subseteq A or C \subseteq A for ideals B, C of N. A non-empty subset M of N is said to be an m-system if for any a, b \in M there exists $a_1 \in < a >$ and $b_1 \in < b >$ such that $a_1b_1 \in M$.

In this paper we introduce the notions of P-prime ideal, small prime and small P-prime ideal which is a generalization of prime ideal and obtain equivalent conditions for an ideal to be P-prime. In this paper we extend the small right ideal in rings to the small right ideal in near-rings. Also we introduce the notions of P-m-system, small m-system and small P-m-system in near-rings.

2. P-prime ideals

Now we introduce the notion of P-prime ideal in near-rings.

Definition 2.1 An ideal A of N is said to be P-prime if BC + P \subseteq A implies B \subseteq A or C \subseteq A for ideals B, C of N.

If A is a prime ideal then clearly A is a P-prime ideal for any ideal P. Now we give an example of a P-prime ideal that is not prime.

Example 2.2 Let $N = \{0, a, b, c\}$ be the Klein four group. Define multiplication in N as follows.

-	0	a	Ь	c
0	0	0	0	0
a	0	a	0	a
ь	0	0	ь	ь
c	0	a	ь	С

Then (N, +, .) is a near-ring (see Pilz [3], p. 407, scheme 7). Here the ideals are $\{0\}$, $\{0, a\}$, $\{0, b\}$ and N. Let $P = \{0, b\}$. Clearly $\{0\}$ is P-prime but not prime since $\{0, a\}$ $\{0, b\} \subseteq \{0\}$ but $\{0, a\} \nsubseteq \{0\}$ and $\{0, b\} \nsubseteq \{0\}$.

Theorem 2.3 Let A be an ideal of N. Then the following are equivalent:

- (1) A is a P-prime ideal.
- (2) $< BC > + P \subseteq A$ implies $B \subseteq A$ or $C \subseteq A$ for ideals B, C of N.
- (3) $b \notin A$ and $c \notin A$ implies $< b > < c > + P \not\subseteq A$ for all $b, c \in N$.
- (4) B \supset A and C \supset A implies BC + P \nsubseteq A for ideals B, C of N.
- (5) B ⊈ A and C ⊈ A implies BC + P ⊈ A for ideals B, C of N.

Proof. (4) \Rightarrow (5) Assume that B and C are ideals of N such that B \nsubseteq A and C \nsubseteq A. Let b \in B\A and c \in C\A. Then < b > + A \supset A and < c > + A \supset A. Thus (< b > + A)(< c > + A) + P \nsubseteq A. So there exists $b_1 \in < b >$, $c_1 \in < c >$, a_1 , $a_2 \in$ A and $a_1 \in$ P such that $((b_1 + a_1) + (c_1 + a_2) + (c_1 + a_2) + (c_1 + a_2) \in$ A. Then $a_1 \in$ A and $a_1 \in$ A and $a_1 \in$ A, we have $a_1 \in$ A. Hence BC + P \nsubseteq A. The other implications are straightforward.

Definition 2.4 A non-empty subset M of N is said to be an P-m-system if for any $a, b \in M$ there exists $a_1 \in \langle a \rangle$, $b_1 \in \langle b \rangle$ and $p \in P$ such that $a_1b_1 + p \in M$.

Clearly every m-system is a P-m-system.

Lemma 2.5 Let A be an ideal of N. Then A is a P-prime ideal if and only if N\A is an P-m-system.

Proof. Let A be an ideal. Assume that A is a P-prime ideal. Let b, $c \in N \setminus A$. Since A is P-prime, by (3) of Theorem 2.3, $< b > < c > + P \not\subseteq A$ implies there exists $b_1 \in < b >$, $c_1 \in < c >$ and $p_1 \in P$ such that $b_1c_1 + p_1 \notin A$. Thus $b_1c_1 + p_1 \in N \setminus A$. Hence N\A is an P-m-system.

Conversely, assume that for any $x, y \in N$ such that $x \notin A$ and $y \notin A$. Since N\A is an P-m-system, there exists $x_1 \in \langle x \rangle$, $y_1 \in \langle y \rangle$ and $p \in P$ such that $x_1y_1 + p \in N\setminus A$. Then $\langle x \rangle \langle y \rangle + P \nsubseteq A$. Hence A is a P-prime ideal.

Theorem 2.6 Let $M \subseteq N$ be a non-void P-m-system in N and I an ideal of N with $I \cap M = \emptyset$. Then I is contained in a P-prime ideal $A \neq N$ with $A \cap M = \emptyset$.

Proof. Let $F = \{J \mid J \text{ is an ideal of } N, J \supseteq I \text{ and } J \cap M = \emptyset\}$. Clearly $I \in F$. By Zom's Lemma, F contains a maximal element A. Thus A is an ideal and A is not equal to A. Assume A and A are ideals of A such that A and A and A are ideals of A and A and A and A are ideals of A and A and A are ideals of A and A and A are ideals of A and A are ideals of A and A and A are ideals of A and A is not equal to A.

The following is an immediate Corollary of Theorem 2.6.

Corollary 2.7 ([3], Proposition 2.81) Let $M \subseteq N$ be a non-void m-system in N and I an ideal of N with $I \cap M = \emptyset$. Then I is contained in a prime ideal $A \neq N$ with $A \cap M = \emptyset$.

Let P(I) denote the prime radical of I which is the intersection of all prime ideals containing I and P(I) denote the P-prime radical of I which is the intersection of all P -prime ideals containing I.

Lemma 2.8 If $n \in \mathbb{P}(I)$, then there exists a positive integer k such that $n^k \in I$.

Proof. If $n \in \mathbb{N}$, then the set $M = \{n, n^2, n^3, ...\}$ is an P-m-system. If $I \cap M = \emptyset$ then by Theorem 2.6, there is some P-prime ideal $A \supseteq I$ with $A \cap M = \emptyset$, a contradiction to $n \in \mathbb{P}(I)$. Hence $I \cap M \neq \emptyset$ and there exists a positive integer k such that $n^k \in I$.

We have the following corollary from Lemma 2.8.

Corollary 2.9 If $n \in P(I)$, then there exists a positive integer k such that $n^k \in I$.

3. Small P-prime ideals

Now we introduce the notion of small right ideal in near-rings similar to the notion of small right ideal in rings (see [2], P.72).

Definition 3.1 An ideal A of N is called a small right ideal if for any right ideal B of N the equation A + B = N implies B = N.

In a near-ring, {0} is always a small right ideal but N is not a small right ideal.

Lemma 3.2 The sum of two small right ideal in N is again a small right ideal in N.

Proof. Let A and B be small right ideals in N such that (A + B) + C = N for any right ideal (of N. Now A + (B + C) = (A + B) + C = N. Since A is a small right ideal in N. we have B + C = N. Since B is a small right ideal in N, we have C = N. Thus A + B is a small right ideal in N.

Definition 3.3 An ideal A of N is said to be small prime if $BC \subseteq A$ implies $B \subseteq A$ or $C \subseteq A$ for small right ideals B, C of N.

Clearly every prime ideal is a small prime ideal but the converse need not be true as the following example shows.

Example 3.4 In Example 2.2, the ideals are {0}, {0, a}, {0, b} and N and the small right ideal is $\{0\}$. Let $A = \{0\}$. Then A is small prime but not prime since $\{0, a\}$ $\{0, b\} = \{0\} \subseteq A$ but $\{0, a\} \subseteq A \text{ and } \{0, b\} \subseteq A.$

Notation 3.5 Let a ∈ N. Let <a>, denote a small right ideal of N generated by a.

Definition 3.6 A non-empty subset M of N is said to be a small m-system if for any $a, b \in M$ whenever <a>, and , exist then there exists $a_1 \in <a>$, and $b_i \in $, such that $\mathbf{a}_1\mathbf{b}_1\in\mathbf{M}$.

Every m-system is a small m-system, but the converse need not be true. In Example 2.2 the only small right ideal is {0}. Let M = {a, b}. Then M is a small m-system, but not an msystem since for a, b \in M there is no $a_1 \in \langle a \rangle$ and $b_1 \in \langle b \rangle$ such that $a_1b_1 \in M$.

Lemma 3.7 An ideal A of N is small prime if and only if N\A is a small m-system.

Proof. Straightforward.

Definition 3.8 An ideal A of N is said to be small P-prime if BC+P \subseteq A implies B \subseteq A or C \subseteq A for small right ideals B, C of N.

If A is a small prime ideal then clearly A is a small P-prime ideal for any ideal P. Now we give an example of a small P-prime ideal that is not small prime.

Example 3.9 Let $N = \{0, a, b, c\}$ be the Klein four group. Define multiplication in N as follows.

	0	а	b	С
0	0	0	0	0
a	0	0	0	а
b	0	a	b	b
С	0	a	Ь	С

Then (N, +, .) is a near-ring (see Pilz [3], p. 407, scheme 8). Here the ideals are $\{0\}$, $\{0, a\}$ and N and the small right ideals are $\{0\}$ and $\{0, a\}$. Let $P = \{0, a\}$. Clearly $\{0\}$ is small P-prime but not small prime since $\{0, a\}$ $\{0, a\} \subseteq \{0\}$ but $\{0, a\} \not\subseteq \{0\}$.

Definition 3.10 A non-empty subset M of N is said to be a small P-m-system if for any a, $b \in M$, whenever $\langle a \rangle_s$ and $\langle b \rangle_s$ exist then there exists $a_1 \in \langle a \rangle_s$, $b_1 \in \langle b \rangle_s$ and $p \in P$ such that $a_1b_1 + p \in M$.

Clearly every small m-system is a small P-m-system.

Theorem 3.11 Let $M \subseteq N$ be a non-void small P-m-system in N and I be a small right ideal of N with $I \cap M = \emptyset$. Then I is contained in a small P-prime ideal $A \neq N$ with $A \cap M = \emptyset$.

Proof. Let $V = \{J \mid J \text{ is a small right ideal of } N \text{ and } J \cap M = \emptyset\}$. Since $I \in V$, V is non-empty. Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq ...$ be an arbitrary chain of small right ideals in V. Let $K = UA_i$. Clearly K is an ideal of N. Suppose for any right ideal Q of N, K + Q = N implies there exists $k \in K$ and $Q \in Q$ such that $Q \in Q$ implies $Q \in Q$ implies $Q \in Q$. Hence $Q \in Q$ is a small right ideal of $Q \in Q$. By implies $Q \in Q$ in the ideal of $Q \in Q$ is a small right ideal of $Q \in Q$. By Zorn's Lemma, $Q \in Q$ contains a maximal element say $Q \in Q$. Thus $Q \in Q$ is a small right ideal of $Q \in Q$ such that $Q \in Q$ is an ideal of $Q \in Q$ such that $Q \in Q$ is a small right ideal of $Q \in Q$. Suppose $Q \in Q$ is an ideal of $Q \in Q$ in that $Q \in Q$ is an ideal of $Q \in Q$. Assume that $Q \in Q$ is an ideal of $Q \in Q$ in that $Q \in Q$ is an ideal of $Q \in Q$. Let $Q \in Q$ is an ideal of $Q \in Q$ is an ideal of $Q \in Q$. Suppose $Q \in Q$ is an ideal of $Q \in Q$ in that $Q \in Q$ is an ideal of $Q \in Q$. Let $Q \in Q$ is an ideal of $Q \in Q$ is an ideal of $Q \in Q$ in the ideal of $Q \in Q$ is an ideal of $Q \in Q$ in the ideal of $Q \in Q$ is an ideal of $Q \in Q$ in the ideal of $Q \in Q$ in the ideal of $Q \in Q$ is an ideal of $Q \in Q$. Thus $Q \in Q$ is an ideal of $Q \in Q$ is an ideal of $Q \in Q$ in the ideal of $Q \in Q$ in the ideal of $Q \in Q$ in the ideal of $Q \in Q$ is an ideal of $Q \in Q$ in the ideal of $Q \in Q$ in the ideal of $Q \in Q$ is an ideal of $Q \in Q$ in the ideal of $Q \in Q$ in the ideal of $Q \in Q$ is an ideal of $Q \in Q$ in the ideal of $Q \in Q$ in the ideal of $Q \in Q$ is an ideal of $Q \in Q$ in the ideal of $Q \in Q$ in the ideal of $Q \in Q$ is an ideal of $Q \in Q$ in the ideal of $Q \in Q$ in the

right ideals. By the maximality of A, $(, +A) \cap M \neq \emptyset$ and $(<c>, +A) \cap M \neq \emptyset$. Let $x \in (, +A) \cap M$ and $y \in (<c>, +A) \cap M$. Since <x>, and <math><y>, exists and M is a small P-m-system, there exists $x_1 \in <x>, y_1 \in <y>, and <math>p \in P$ such that $x_1y_1 + p \in M$. Also $x_1y_1+p \in ((, +A)(<c>, +A))+P$. So there exists $b_1 \in , c_1 \in <c>, p_1 \in P$ and $a_1, a_2 \in A$ such that $x_1y_1 + p = (b_1 + a_1)(c_1 + a_2)+p_1 = b_1(c_1 + a_2)+a_1(c_1 + a_2)+p_1 = (b_1(c_1 + a_2) - b_1c_1)+b_1c_1+a_1(c_1 + a_2)+p_1 = (b_1(c_1 + a_2) - b_1c_1)+b_1c_1+p_2+a_1(c_1 + a_2)$ for some $p_2 \in P$ implies $x_1y_1 + p \in A$. Thus $A \cap M \neq \emptyset$, a contradiction. Then $B \subseteq A$ or $C \subseteq A$. Hence A is a small P-prime ideal of N.

References

[1] F.A.M. Aldosary and S.A.A. Bashammakh, Rings with chain conditions on small right ideals, Punjab University J. math., 37 (2005), 1-10.

[2] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.

[3] G. Pilz, Near-rings, North-Holland, Amsterdam, 1983.